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Abstract

Regulatory interactions with the amygdala are thought to be critical for emotional

processing in the extended limbic system.  Structural equation modeling (path

analysis) is a widely used method to quantify interactions among brain regions

based on connectivity models, but is often limited by lack of precise anatomical and

functional constraints.  To address this issue, we developed an automated

elaborative path analysis procedure guided by known anatomical connectivity in the

macaque.  We applied this technique to a large human fMRI dataset acquired

during perceptual processing of fearful facial stimuli.  The derived models were

inferentially validated using a bootstrapping split-half approach in pairs of 500

independent groups.  Significant paths across the groups were used to form a

rigorously validated and consistent path model.  We confirm and extend previous

observations of amygdala regulation by an extended prefrontal network

encompassing cingulate, orbitofrontal, insula, and dorsolateral prefrontal cortex, as

well as strong interactions between amygdala and parahippocampal gyrus.  This

validated model can be used to study neurocognitive correlates as well as genotype

or disease-related alterations of functional interactions in the limbic system.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Page 3 of 44

Introduction

The limbic system is essential to emotional processing (LeDoux, 2000).  The amygdala is

a critical node in this network, and is necessary for imbuing percepts with affective

significance, especially for fearful or dangerous environmental stimuli (Amaral and Price,

1984; LeDoux, 2000).  In agreement with this, studies of patients with lesions in the

amygdala (Adolphs et al., 1994) have consistently shown deficits in the ability to identify

the affect of faces.  Functional neuroimaging studies have also implicated amygdala

activity in fear response (Morris et al., 1996; Hariri et al., 2000) with highest amygdala

response to fearful or angry faces.

However, while the amygdala is a central part of the neural circuitry for emotion, it does

not operate in isolation.  In fact, the importance of functional interconnectedness between

component structures of the “limbic lobe” was stressed even in 1937, when Papez

emphasized their “harmonious mechanism” as the basis of emotional regulation (Papez,

1937).  Functional interactions between component structures in the limbic system are

wide-ranging.  Tracer studies in macaque monkeys show that the amygdala is extensively

anatomically connected with cortical areas including cingulate, prefrontal cortex,

parahippocampal gyrus, and insula (Barbas and De Olmos, 1990; Amaral and Price,

1984; Ghashghaei and Barbas, 2002; Stefanacci et al., 1996) and subcortical areas

including the hippocampus (Saunders et al., 1988).  Therefore, defining the functional

limbic network is expected to provide a better characterization and classification of
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healthy and abnormal function related to emotional cognition and regulation.  Network

definition requires neuroimaging methodology which takes functional interconnections

into specific account.  Here, we use structural equation modeling (SEM) or path analysis,

a procedure to identify directional interaction among regions given the pairwise

correlations of their time series, in a large dataset of 83 healthy humans scanned during a

well-validated task involving perceptual judgment on angry and fearful faces (Hariri et

al., 2002).

SEM has been applied in functional neuroimaging for over a decade (McIntosh and

Gonzalez-Lima, 1994; Bullmore et al., 2000; Steele et al., 2004).  Despite its wide

acceptance in the field, applying SEM to neuroimaging data is not straightforward. One

important difficulty comes from the fact that results from SEM as it is commonly used

are only inferential insofar as they support or do not support an a priori model of

connectivity.  This poses a problem since our current anatomical knowledge often does

not constrain modeling of interactions to a sufficient degree in the highly interconnected

limbic system.

To overcome this obstacle, we used an elaborative approach: we started with a “nuclear

model” specifying only a small number of very well validated connections (Ghashghaei

and Barbas, 2002; Paus, 2001; Phillips et al., 2003) and then used a data-driven search

algorithm (Bullmore et al., 2000; Sorbom, 1989) to iteratively add paths, constrained by

known anatomical connectivity (Kötter, 2004), until a parsimonious model was formed.

Since the final model selected was thus guided by the data, it is possible that derived
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paths might reflect noise in the sample and not the inherent causal structure of the data.

To guard against this eventuality of over-fitting and to provide a stringent test of the

derived model, a bootstrapping approach was used in which the subject pool was

combined into pairs of 500 independent groups, with each group containing 20 subjects,

in order to verify the models.  For each pair, a path model was independently derived on

the first group of the data and then forced upon the second group for inferential

validation.  Significant paths across the first group of each pair were used to form a

rigorously validated and consistent path model.

Our results show that a well-fitting model of limbic circuitry can be derived and

statistically validated from functional MRI.  The properties of the model confirm and

extend current knowledge about functional interactions in the human limbic system and

provide a framework of effective connectivity that can be used to study genetic and

disease-related variation across individuals.

Materials and Methods

The automated path analysis procedure used on the first group of each pair is shown

graphically in Figure 1 and largely follows Bullmore et al., 2000 with exceptions in the

use of modification index (Sorbom, 1989), estimate of effective degrees of freedom

(Kruggel et al., 2002), model build based on a nuclear model, and correlations derived

from residual activity as discussed below.
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Subjects

83 healthy subjects (33 male, age = 28.27± 7.92, Edinburgh Handedness Inventory =

0.92± 0.09) gave written informed consent and participated in an ongoing study

according to the guidelines of the National Institute of Mental Health Institutional

Review Board (Bertolino et al., 2001).  Subjects were screened for and cleared of

neurological, psychiatric, or substance abuse history and had no history of other

significant medical problems.  All available scans of subjects meeting inclusion criteria

(handedness > 0.8 and 18 ≤  age ≤ 50) and of sufficient quality (see below) were used.

Data from subjects including the present cohort from this ongoing experiment have been

published previously (Meyer-Lindenberg et al., 2006; Pezawas et al., 2005).

The data were randomly sampled (without replacement) 500 times to create pairs of two

groups containing 20 subjects each.  Within each pair, groups were matched for age,

gender, and handedness, using an independent 2-sample T-test with a threshold of P >

0.05 as criterion.

Experimental Paradigm and Image Processing

During a block design face matching paradigm described previously (Hariri et al., 2002),

subjects were asked to match one of two simultaneously presented faces with negative

emotional affect, fear and anger, (Ekman and Friesen, 1976) to an identical target image.

As a control task, subjects were asked to match geometric shapes in a similar way.  Four
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blocks of face matching served as the activation task which was interleaved with five

blocks of control matching.  Subjects were scanned using a GE Signa 3T scanner

(Milwaukee, WI) using a gradient echo EPI sequence designed for BOLD fMRI (24 axial

slices, 4 mm thickness, 1 mm gap, TR/TE = 2000/28 ms, FOV = 24 cm, matrix = 64 x

64).  Images were processed as described previously (Meyer-Lindenberg et al., 2006)

using SPM99 (http://www.fil.ion.ucl.ac.uk/spm/).

Images were realigned to the middle image of the scan run, spatially normalized into a

standard stereotactic MNI space using an affine and nonlinear transformation, smoothed

with an 8-mm FWHM Gaussian filter, and ratio normalized to the whole-brain global

mean.  A statistical image for the contrast of emotional faces versus the control task was

obtained for each subject.  The functional MRI data were quality checked and clear of

artifacts and low signal to noise ratio.

Region selection

Eight brain regions in the left hemisphere were selected based on prior knowledge of

their interaction in an emotional network and activation or functional connectivity to the

amygdala (Mayberg et al., 1999; Meyer-Lindenberg et al., 2005; Pezawas et al., 2005).

The selected regions were supragenual cingulate (Brodmann Area (BA) 32), subgenual

cingulate (BA 25), posterior cingulate (BA 23), orbitofrontal cortex (BA 11),

parahippocampal gyrus including hippocampus (PHG), lateral prefrontal cortex (BA 46),

amygdala, and insula.  8mm spherical masks were placed at the chosen coordinates,
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which were guided by two lines of inquiry: (1) previously published (Meyer-Lindenberg

et al., 2005; Pezawas et al., 2005) locations as well as (2) coordinates of highest

activation, deactivation, or connectivity to the amygdala in a sample largely the same as

the entire subject pool sample, as ascertained by a second-level random effects analysis.

The selected regions and their coordinates are shown in Table 1.  In order to gain

functional specificity and obtain regionally specific gray matter masks, the spherical

masks were then intersected with binarized functional activation maps (from the one-

sample T-test of functional activation) thresholded at P<0.05 FDR corrected for multiple

comparisons.  In this way, all studied voxels were guaranteed to show significant task-

related differential activity or functional connectivity to the amygdala through the

duration of the task.

Known Anatomical Connectivity in the Macaque Monkey

It is possible that an automated path analysis procedure could derive connections that are

not directly anatomically connected.  These connections could, for example, reflect

interactions that are mediated by other regions or arise spuriously in the context of an

incorrectly specified anatomical model (McIntosh and Gonzalez-Lima, 1994).  To take

this source of confounds into account, the model search was constrained to reject paths

with known evidence against a direct anatomical connection.  Since human data are

incomplete, we used studies of the macaque monkey, determined largely using the

Collations of Connectivity on the Macaque Brain (CoCoMac) database

(www.cocomac.org) (Kötter, 2004) and supplemented by literature searches from
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Pubmed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed) specifying the

names of the regions.  Only those connections with all positive evidence against their

existence according to our operational definition were excluded from the model.  Table 2

includes references for each path’s anatomical connectivity.  Since known anatomical

connectivity in the macaque does not constrain a path model enough to allow for an

identified model, an automated path analysis procedure (described below) was used to

iteratively add paths to build a parsimonious model.

Interregional correlation matrix

The median time series for all voxels in each of the p regional masks (here 8=p ) was

extracted for each subject.  Sustained shifts in BOLD relative to the presence of task were

removed to minimize the impact of task-related coactivation on connectivity measures,

which gave “residual activity” time series.  This was done through a general linear model

approach (as implemented in SPM99) while maintaining fluctuations around the median.

Because our region selection is focused on areas showing significant task activation, our

input data are therefore informed by the cognitive task, but not exclusively or largely

driven by task-related tonic activation changes.  We have used this approach in previous

analyses of effective connectivity to derive models in good agreement with known

neuroanatomy and physiology (Meyer-Lindenberg, et al., 2004; Pezawas et al., 2005).

Extracted time series were then averaged across subjects for each region. These average

time series are shown in Figure 2.  The pairwise correlations between the average time
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series for each region were used to compute the interregional correlation matrix, C , for

the studied groups.

The effective degrees of freedom, υ , for each regional average time series was calculated

from the data, using the autocorrelation structure of the average time series, assuming an

AR(1) model (Kruggel et al., 2001) according to

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−= 2

2

)1(1
)1(1)(

ρ
ρυ PN

where N represents the number of time points in the MRI scan, P represents the number

of regressors, and 2)1(ρ  is the squared first-order autocorrelation.

Following (Bullmore et al., 2000), Principal Component Analysis (PCA) was used to

estimate the residual variance, iψ , for each region i .  The residual variance was

estimated from the data as the ratio between the square of the first eigenvalue ( 2
1λ ) and

the sum of the square of all m eigenvalues derived from the PCA of that region.

∑
=
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Path Analysis
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The methodological goal of this study was to investigate an automated method of path

model construction rather than using an a priori model as is the usual case in path

analysis (Meyer-Lindenberg et al., 2005; Steele et al., 2004; Büchel and Friston, 1997).

Starting from a nuclear model (Meyer-Lindenberg et al., 2005; Pezawas et al., 2005),

new paths were added stepwise until an optimally explanatory, but parsimonious model

was reached.  The nuclear model was comprised of four predefined paths which were

kept unconstrained from zero at every iteration resulting in an initial model with 4=q

paths, where q  is the number of paths unconstrained from zero.  The connections of

orbitofrontal cortex (OFC) to amygdala, amygdala to subgenual cingulate, subgenual

cingulate to supragenual cingulate, and supragenual cingulate back to amygdala

comprised our nuclear model.  For all other regions, the model started with the

)1( −pp vector of path coefficients, θ , all constrained to zero for those paths.

In the path analysis procedure, the correlation matrix predicted by the path model, )(θΣ ,

was derived using the Reticular Action Model (RAM) defined by the so-called McArdle-

McDonald equation (McArdle and McDonald, 1984)

)')(()()( 11 −− −Ψ−=Σ KIKIθ

where Ψ denotes a )( pp× diagonal matrix of the residual variances, iψ , for each region,

K  denotes the )( pp× path model matrix comprised of the vector of path coefficients, θ ,

and zeros along the diagonal, I denotes a )( pp×  identity matrix, and )')(( 1−− KI

denotes the transpose of the matrix operation.
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The value of each unconstrained path coefficient in θ  is found by iteratively minimizing

the maximum likelihood discrepancy function

pCCtrCF −−Σ+Σ=Σ − ))log(det())(())(log(det())(,( 1 θθθ

in terms of the free components in θ .  The value of ))(,()1( θυ Σ×− CF is a chi-square

approximation for the model with qpp −+ )1(2
1 degrees of freedom.

In our analysis, this calculation was implemented in Matlab (Mathworks, Natick, MA)

using Adaptive Simulated Annealing (ASA) (www.ingber.com) (Ingber, 1989) as an

annealing minimization program that attends to some annealing schedule allowing the

minimization search to explore a broad space.  This is used to avoid finding values of θ

that resulted in a local minimum.  The ASA C code was interfaced to Matlab by use of

the ASAMIN “mex” C code (www.econ.ubc.ca/ssakata/public_html).  The minimization

was started with random seed values for the coefficients, θ .  Although we did not

conduct a systematic study of differing minimization procedures, the annealing approach

and previous successful application in a neuroimaging study (Steele et al., 2004) made

ASA a reasonable choice for global minimization.

In order to specify or force a model onto a particular group, the matrix K can be specified

a priori.  However, in order to automatically derive the model, a gradient descent

approach was used to find, at each step, the one path whose inclusion would most
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improve the model fit with the observed correlation matrix.  The gradient descent

approach was calculated for each possible path coefficient l  in θ  as a Modification

Index, MI , according to a procedure in (Sorbom, 1989)

∧

∧

=
l

l

k

g
MI

2

2
1

where lg
∧

 = 
l

F
θ
∂
∂

 and lk
∧

 = 
2

l l

F
θ θ
∂
∂ ∂

.  The first order and second order partial derivatives

can be approximated (Cudeck et al., 1993) according to

1 11 ( ( )[ ( ) ] ( ) )2 l
l

F tr C Cθ θ θ
θ

− −∂
= Σ Σ − Σ

∂

2
1 11 ( ( ) ( ) )2 l l

l l

F tr C Cθ θ
θ θ

− −∂
= Σ Σ

∂ ∂

The matrix lC comprises the partial derivatives of the modeled covariance with respect to

the l th path coefficient and is defined as

η
θηθ )()( Σ−+Σ

= l
l

eC
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where le  denotes a vector which has the length of the total possible number of path

coefficients, )1( −pp , with all elements set to zero except at the l th position which is set

to one, and η  is an arbitrarily small constant set to 410−=η  for this experiment.

The value of MI  approximates the estimate of how much better the model fits to the

observed data when the coefficient l  is unconstrained from zero.  The path coefficient

with the greatest MI  value was therefore unconstrained from zero and incorporated into

the model. To guide this iterative process, since addition of more paths always

numerically improves the fit, it is necessary to use goodness of fit parameters dependent

on model parsimony.  Therefore we used Bollen’s parsimonious fit index (Bollen,

1988), ρ , which adjusts for both the fit with the observed correlation matrix and the

fewest number of paths possible.  Bollen’s parsimonious fit index ranges from zero to

one with one being a perfectly parsimonious model, and is defined as

k
qkk q

/
)/()/(

2
0

22
0

χ
χχ

ρ
−−

=

where 2
0χ  denotes the chi square for the model in which all path coefficients are set to

zero, 2
qχ  denotes the chi square for the model with q nonzero paths, and k represents the

number of non-redundant elements in the observed correlation matrix and the estimated

residual variances ))1(2
1( += ppk .
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At each step, path coefficients resulting in the maximum increase of ρ relative to the

previous step were incorporated into the model until no further improvement of

parsimony was found.  The process of automatic construction can be seen in Figure 3.

The generated model was checked to prevent unidentified models which do not have

unique solutions.  In an unidentified model, the number of nonzero paths, q , is greater

than the number of non-redundant elements in the observed correlation matrix and

residual variances, k .  Thus, in our model, q  was always restricted to be less than k .

For validation, path models were automatically constructed for the first group of each of

the 500 surrogate datasets.  Then, the path model matrix automatically derived from the

first group was forced on the independent data of the second group by specifying K .

The model was considered validated for the pair when the model fit both the first and

second group data of a pair with a threshold of P > 0.05. Furthermore, to assess the

significance of individual paths, a mean and standard deviation was derived for each

coefficient across all validated models from the first group.  Those path coefficients in

which the standard deviation from the mean did not cross zero were deemed to be

significant and are discussed below.

For validation of the nuclear model, each path in the nuclear model was removed (forced

to zero) one at a time from the first group automatically derived models.  The

modification index of that removed path was compared to the modification index of all

other paths across the 500 groups in a repeated measures one-way ANOVA.
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Results

A model was independently derived from the first of each group of 500 pairs. These

models reached an average parsimonious fit index of 07.075.0 ±=ρ , and all 500

derived models survived the P > 0.05 threshold.  The maximum of the parsimonious fit

index across all 500 groups is shown in Figure 3.

For validation, the connections derived automatically from the first group in each pair

were subsequently forced on the observed correlation matrix derived independently from

the second group in that pair.  499 models which previously fit again survived the P >

0.05 threshold, meaning that the derived models could be independently validated

inferentially in the second independent group of matched healthy subjects in all but one

instance. The derived models were therefore both parsimonious and fit the observed data

well.

In addition to validating the models as a whole in each pair, we also desired to see which

individual path coefficients were consistent across pairs.  For all the automatically

derived models that fit both the dataset on which they were derived (first group) and an

independent matched dataset (second group), the mean and standard deviation of the

automatically derived path models were calculated for all paths and recorded for those

path coefficients in which the standard deviation from the mean did not cross zero.  Ten
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paths were found to make significant and consistent contributions across the groups.

These significant paths and their corresponding coefficients are shown in Table 3 and

Figure 4.

The amygdala was found to be a hub of connections, having interactions with the

parahippocampal gyrus (PHG), subgenual cingulate, OFC, posterior cingulate, insula, and

supragenual cingulate.  The paths from amygdala to PHG, supragenual cingulate to

amygdala, and supragenual cingulate to posterior cingulate were especially strong.

In order to determine if the a priori nuclear model provided a good fit to the data, each

path in the nuclear model was removed and the modification index of the removed path

was compared to the distribution of modification indices for each coefficient.  The results

for this calculation are shown in Table 4.  The modification index was significantly

higher for the all the removed paths in the nuclear model than the distribution of

modification indices for all the other paths.  These high modification indices suggest that

the nuclear model is justifiably included.

Discussion

In the present work, we used a data-driven approach to construct a parsimonious model

of effective connectivity during neural processing of fearful stimuli that was validated

using a bootstrapping approach in a large dataset of healthy participants.  Our data show

that iterative search algorithms guided by known neuroanatomy are a feasible approach to
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the characterization of neural interactions in the human brain.  The derived model

confirms and extends previous results on human amygdala regulation.

Each of the path coefficients in the model represents a directional influence from one

brain region to another across the time of the task.  A positive (negative) coefficient is

interpreted as the degree to which increases in BOLD activity in the parent region predict

increases (decreases) in the child region.  Since the signal is derived from the BOLD

response, positive or negative coefficients cannot naively be assumed to represent

excitation or inhibition, respectively.  BOLD response is generally thought to be a

combination of both excitatory and inhibitory input to a neuronal region that cannot be

independently estimated using fMRI (Logothetis et al., 2001; Arthurs and Boniface,

2006) although some studies have shown neural excitatory input to be more

representative of the BOLD signal (Waldvogel et al., 2000).  Also, the neural

understanding of a decrease in BOLD signal remains controversial (Harel et al., 2002;

Raichle et al., 1998) but a recent study has shown that decreases in BOLD signal

correlate to a suppression of neural activity (Shmuel et al., 2006).

Although establishing effective connectivity through path analysis is useful, it does have

drawbacks.  Path analysis uses covariances or correlations as the primary data, ignoring

the arrow of time as well as any mutual information between regions which is not

correlative (such as higher order or nonlinear dependencies).  Dynamic Causal Modeling

(DCM) is able to take this information into account and is also better able to represent

neural interactions directly by explicitly modeling the dependence of BOLD signal on
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neural response (Penny et al., 2004).  However, DCM also does require a predefined

network of interaction and does not yet provide an inferential test of goodness of fit of the

model.  For both SEM and DCM, even if directionality is correctly estimated, modeling

results do not prove causality but only infer how well the specified directional model is

able to represent the given data.  In SEM, the relevance of model fit, per se, for the

neurobiological usefulness of a model of effective connectivity also depends on the

specific question asked (Protzner and McIntosh, 2006). Additionally, our large dataset

enabled an extensive resampling procedure for model verification. If fewer subjects are

available, other resampling methods, such as bootstrapping with replacement across pairs

(non-independent pairs) could be used instead.

Here, we introduced an elaborative approach starting from a nuclear model based on

previous work and iteratively adding additional paths.  There is no guarantee that the

model derived by this procedure is “the best” model possible, since an exhaustive search

of the model space is not computationally feasible (Bullmore et al, 2000).  However,

features of the connectivity structure found in the present study are supported by an

extensive body of previous work.

In particular, the loop linking amygdala to subgenual cingulate to supragenual cingulate

and back to amygdala was backed by previous studies (Pezawas et al., 2005; Meyer-

Lindenberg et al., 2005) and anatomical connectivity (Ghashghaei and Barbas, 2002;

Paus, 2001; Phillips et al., 2003) and was supported by the current model.  We have

hypothesized that these results are consistent with a negative feedback loop for amygdala
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function in the context of fear extinction (Pezawas et al., 2005).  The amygdala is

hypothesized to feed bottom-up information to the subgenual cingulate regarding the

emotional coloring of events (Amaral and Price, 1984; Phillips et al., 2003).  The

negative connection from supragenual cingulate back to amygdala is consistent with

behavioral data in rodents where electrical stimulation of the medial prefrontal cortex

(mPFC) causes inhibition of several nuclei within the amygdala decreasing fear response

(Quirk et al., 2006; Maren and Quirk, 2004) as well as in humans where data suggests the

mPFC is an inhibitory input to the amygdala (Rauch et al., 2006).  Interestingly, both the

negative connection from supragenual cingulate to amygdala as well as a negative

connection from posterior cingulate to amygdala made a significant contribution to the

model.  This indicates the importance of regulatory interactions of the amygdala activity

with more posterior cingulate cortex.  This interaction may have been missed by previous

functional connectivity studies (Pezawas et al., 2005) that were focused on a part of the

cingulate that also showed structural abnormalities in the context of a genetic effect. Of

interest in this context is a subsequent study of another genetic variant implicated in

amygdala dysregulation that did indeed show structural abnormalities in posterior

cingulate (Meyer-Lindenberg et al., 2006).

Our model showed strong interactions of lateral prefrontal cortex (BA 46) with OFC.

This is in good agreement with anatomical data in which OFC is extensively and

reciprocally connected with dorsolateral prefrontal cortex (DLPFC) (Barbas and Pandya,

1989; Petrides and Pandya, 1999) as well as with previously derived models in which

DLPFC exerts higher-level control over lower order regions in the context of emotion



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Page 21 of 44

regulation (Meyer-Lindenberg et al., 2005; Hariri et al., 2003; Levesque et al., 2003).

The significant path derived in our model has directionality from BA46 to OFC, which

may indicate the predominance of information flow from OFC into higher order areas.

Amydgala and the OFC are strongly anatomically interconnected (Ghashghaei and

Barbas, 2002).  OFC connections, especially with the amygdala, are critical for stimulus-

reinforcement association learning (Pears et al., 2003) and are involved in changing

learned behavior based on feedback, such as punishment (Kringelbach and Rolls, 2004).

Together with this strong a priori evidence and our own previous SEM work (Meyer-

Lindenberg et al., 2005), the present data further support the importance of this

interaction in the connectivity structure of the limbic system by showing a consistent and

independently significant contribution to the effective connectivity model derived here.

We observed a strong connection from amygdala to the PHG (including hippocampus),

delineating a neural interaction thought to be essential to the processing of emotional

memory (Saunders et al., 1988).  Through increased interactions during observation of

emotional stimuli, the amygdala-hippocampal connection has been observed to be

enhanced during both memory encoding and consolidation in both animal models

(McGaugh, 2000; McGaugh and Roozendaal, 2002) and human studies (Dolcos et al.,

2004; Phelps, 2004; Smith et al., 2006).  The connection in our model is thus consistent

with experimental evidence for amygdala regulated hippocampal function in emotional

memory.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Page 22 of 44

In a larger context, Phillips et al. (Phillips et al., 2003) have hypothesized the existence of

a dorsal and a ventral stream of emotional cognition, a proposal which is largely

consistent with the interactions observed here.  The ventral stream is posited to appraise

emotional behavior and produce an affective state, whereas the dorsal stream acts as a

regulatory mechanism for the ventral stream.  The hypothesized ventral stream is

comprised of the amygdala, subgenual cingulate, OFC, and insula.  The insula and the

amygdala have been implicated as part of both the identification of emotional

significance of the stimulus and the production of an affective state in response to that

stimulus (Calder et al., 2001).  The OFC and subgenual cingulate have been shown

through lesion and neuroimaging studies to affect the production of an emotional

response to a stimulus (Paus, 2001; Kringelbach and Rolls, 2004).  Our model quantifies

interactions between these regions of the hypothesized ventral stream of emotional

processing.

The dorsal system is comprised of supragenual cingulate, hippocampus, and lateral

prefrontal cortex.  All of these structures are important for emotional regulation, possibly

through reciprocal interaction with structures in the ventral stream.  The posterior

cingulate is not explicitly named as being part of the dorsal stream; however, its location

in the dorsal cingulate and strong negative connection to the amygdala observed here are

consistent with a regulatory function with respect to the amygdala.  Also the strong

negative connection from supragenual cingulate to amygdala is consistent with the

interpretation of a dorsal inhibitory stream regulating production of an affective response

to an emotional stimulus by the ventral system.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Page 23 of 44

In summary, we have derived and verified an effective connectivity network during

processing of fearful and angry emotional stimuli in the human brain using fMRI.  This

model largely confirms and extends previous accounts of amygdala interactions in the

context of emotional regulation (Pezawas et al., 2005; Phillips et al., 2003).  We hope

that this model will be usefully applied in the study of disease states hypothesized to

affect connectivity in the brain, such as schizophrenia.  It can also be used to study

genetic variation impacting on connectivity and emotional processing, such as the COMT

val157met variant (Drabant et al., 2006) and 5-HTTLPR, which has been shown to have

an effect on functional connectivity (Pezawas et al., 2005).  The application of an

anatomically plausible and independently validated model should provide additional

power in ascertaining subtle biological effects, complementing traditional neuroimaging

analysis.
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Figures and Tables:

[Insert Figure1.tif]

Figure 1:  Methodology for automated path analysis procedure used to generate one model.  Regions
of interest were selected and an inter-correlation matrix was made from the average across subjects of the
time series for each region.  An elaborative path analysis procedure was then used to iteratively add paths
(orange arrow) to a predefined nuclear model (yellow arrows) constrained by anatomical connectivity until
a parsimonious model was formed.  The off diagonal terms in the anatomical connectivity matrix (lower
left corner) colored black represent paths with known evidence against a direct anatomical connection that
were rejected from the model.

[Insert Figure2.tif]

Figure 2: Average time series from the first group of subjects for each of the eight regions used in the
analysis.  The time series from each of the eight regions labeled above was extracted from all the subjects
in the first group of the data for each region and for each subject.  Activation related to the task was
subtracted from the time series.  The time series were averaged across subjects and the mean across the 500
groups with standard deviation error bars are shown here.  The horizontal axis gives the time in scans and
the vertical axis gives the BOLD response in arbitrary units.

[Insert Figure3.tif]

Figure 3:  Model fitting reached a maximum in parsimonious fit index.  The automatically constructed
model which reached the maximum in parsimony across the 500 groups is shown.  During the automatic
construction of each model, paths were iteratively unconstrained from zero.  Each path increased the
parsimonious fit index until a maximum was reached.  The model was run over 25 iterations.

[Insert Figure4.tif]

Figure 4:  Automatically derived path model.  Yellow paths indicate those that were part of the nuclear
model and forced to be in the model at every iteration.  Orange paths were automatically derived from the
data using the automated procedure.  Each region is represented by circles, and coordinates of each region
are given in Table 1.  The transparency of the circles representing each region determine how far lateral
(more transparent) or medial (less transparent) the regions are.  Each number represents the path coefficient
or the directional influences from one brain region to another across the time interval of the task.  Each path
shown here was significant according to the criteria defined above.
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Table 1:

Coordinates for Regions Used in Modeling

Region MNI Coordinates

Supragenual Cingulate (BA 32) 0 34 30

Subgenual Cingulate (BA 25) 0 15 -14

Orbitofrontal Cortex (BA 11) -46 31 -9

(Para)Hippocampal Gyrus -26 -19 -14

Lateral Prefrontal Cortex (BA 46) -56 26 25

Amygdala -26 0 -20

Posterior Cingulate (BA 23) 0 -33 38

Insula -40 0 10

Table 1: Coordinates for Regions Used in Modeling.  The MNI coordinates for each region are shown.  8
mm spherical masks were made around each of these coordinates and then intersected with maps of
functional activation, deactivation, or connectivity to the amygdala during the task.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Page 26 of 44

Table 2: Matrix of Anatomical Connectivity in the Macaque Monkey.  The anatomical connectivity as determined largely by queries to the Cocomac
database (www.cocomac.org) and supplemented with searches to Pubmed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed) is shown.  The matrix is
read as column connecting to row, i.e. amygdala connects to BA 46 with reference “0 (PCG81-amg:W40-46)”.  Each cell is coded as follows: “0” represents no
connection in all Cocomac references and therefore the path is not allowed in the model; “1”, “2”, or “3” represents the density of the label with “3” being the
strongest; “X” represents the label being present but of unknown density; “Y” represents a confirmation of a connection based on a Pubmed search; “N”
represents no reference found for the connection.    A reference in parentheses follows each symbol.  The references following “Y” are listed in the references

Table 2:

Matrix of Anatomical Connectivity in the Macaque Monkey

Amygdala Lateral PFC
(BA 46)

Insula OFC (BA 11) PHG Posterior
Cingulate
(BA 23)

Subgenual
(BA 25)

Supragenual
(BA 32)

Amygdala <> 1 (SA00-
46:SA00-Ld)

X (MM82a-
INS:MM82c-
amg)

1 (SA00-
11:SA00-Ld)

Y (Stefanacci et
al., 1996;
Saunders et al.,
1988)

X (Al92-25:Al92-
Bi)

X (Al92-25:Al92-
Bmg)

X (SA00-
32:SA00-Ldi)

Lateral PFC
(BA 46)

0 (PCG81-
amg:W40-46)

<> X (MM82a:W40-
46)

X (PP99-
11:PP99-46)

0 (Insausti &
Munoz, 2001)

X (B88-23:B88-
46v)

0 (CCTCR00-
25:CCTCR00-
46)

X (PP99-
32:PP99-46)

Insula X (CP95a-
Abpc:CP94-Lai)

Y (Mufson &
Mesulam, 1982)

<> Y (Mufson &
Mesulam, 1982)

N Y (Mufson &
Mesulam, 1982)

1 (CP94-
25:CP94-Iapm)

3 (CP94-
32:CP94-Iai)

OFC (BA 11) X (PCG81-
amg:W40-11)

3 (CP94-
46:SA94A-11)

X (B88-Id: B88-
11)

<> Y (Morecraft et
al., 1992;
Cavada et al.,
2000)

X (B88-23:B88-
11)

X (B88-25:B88-
11)

3 (CP94-
32:AP84-11)

PHG Y (Stefanacci et
al., 1996)

N N Y (Insausti &
Munoz, 2001)

<> N N N

Posterior
Cingulate
(BA 23)

0 (AP84-
B:AP84-23)

1 (PP94-
46:VPR87-23)

X (JB76a-
Id:VPR87-23)

1 (PP94-
11:MCSGP04-
23)

Y (Kobayashi &
Amaral, 2003)

<> 0 (VPR87-
25:VPR87-23)

1 (PP94-
32:VPR87-23)

Subgenual
(BA 25)

X (AP84-
B:AP84-25)

0 (BP89-
46:BP89-25)

X (CP94-
Iam:CP94-25)

X (PP84-
11:VP87-25)

N 0 (BGDR99-
23:BP89-25)

<> 3 (BP89-
32:BP89-25)

Supragenual
(BA32)

3 (AP84-
B:AP84-32)

X (BP89-
46:BP89-32)

X (B88-Ig:B88-
32)

N Y (Insausti &
Munoz, 2001)

X (B88-23:B88-
32)

3 (B89-25:B89-
32)

<>



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Page 27 of 44

section below.  The references following all other symbols are described in (Kötter, 2004).  All symbols except “0” represent paths that were allowed in the
model.
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Table 3:

Significant Path Coefficients

Path Mean Value Standard Deviation

Amygdala→PHG 0.282 0.105

Amygdala→Subgenual 0.111 0.042

Insula→Amygdala 0.087 0.086

OFC→Amygdala 0.075 0.032

OFC→BA46 0.164 0.139

Posterior Cingulate→Amygdala -0.074 0.049

Subgenual→Insula 0.066 0.051

Subgenual→Supragenual 0.054 0.045

Supragenual→Amygdala -0.164 0.037

Supragenual→Posterior Cingulate 0.264 0.172

Table 3: Significant Path Coefficients.  Path models automatically generated on the first group which also
fit the independent second group were averaged.  Those coefficients in which the standard deviation from
the mean did not cross zero were deemed significant and are shown here.
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Table 4:

Nuclear Model Modification Indices

OFC→Amygdala Supragenual→Amygdala Amygdala→Subgenual Subgenual→Supragenual

F-value 14.00 55.75 36.76 4.71

P-value 0.0045 <.00001 <.00001 0.034

Table 4: Nuclear Model Modification Indices.  To test the significance of each path in the nuclear model,
each path within the nuclear model was separately forced to zero in the complete models derived across the
first group in the 500 pairs. The modification index of that removed path was compared to the modification
indices of all other paths in a repeated measures one-way ANOVA.  The significance values for each
modification index in the nuclear model versus the modification index of all other paths are shown.
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